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Table 4. Test result on the effect of F(000) 

B = 50; Aft~e---- --1000; F(000)true = 367. 

F(000) 0 200 367 400 500 
S 0"460 0"878 0"970 0"975 0"985 
Afest -1000 -1000 -1000 -1000 -1000 

be seen that F(000) has a significant influence on the 
value of S, but has little effect on Afest. Hence we 
could omit the term F(000) in the calculation of S. 

Influence of the presence of heavy atoms 

In principle, the Sayre equation is not valid for struc- 
tures simultaneously containing light and heavy 
atoms. However, the results shown above on the test 
structure containing different kinds of atoms like C, 
N, C1 and Cu demonstrate that the Sayre equation 
could give satisfactory results. To see the effect of 
heavy atoms, the copper of the test structure was 
replaced by platinum. From Table 5, we can see that 
in the case of platinum perchlorophthalocvanine. 
Af~st is -940 A for Af= --1000 A giving the resultant 
image shown in Fig. 2(d), which is still acceptable. 
A better result was obtained by using the equation 
of Woolfson (1958) instead of Sayre's. Here Afest is 
--970 /~ and an image like Fig. 2(c) was obtained. 

Concluding remarks 

The procedure proposed in this paper has been shown 
to be successful in processing theoretical images 

Sample 

Equation 
used 

S 
af~t 

Table 5. Test result on the effect of a heavy atom 

B = 50; F(000) = 300; Aftr~ e = --1000/~. 

Cu(Clphthalo- 
Pt(Clphthalocyanine) cyanine) 

Sayre Woolfson's Sayre 
equation equation equation 

0.903 0-959 0.952 
-940 -970 - 1000 

without preliminary structural information. In addi- 
tion, it has been shown that the procedure is not 
sensitive to errors in the temperature factor and 
F(000) or to the presence of heavy atoms. The next 
step in the investigation is to apply the method to 
experimental EM's. Another important task still to 
be begun is the extension of the method to include 
the dynamical diffraction effect. 
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Abstract 

Comparisons of distances between the positions 
obtained from harmonic and anharmonic refinements 
lead to the conclusion that the positional parameters 
may have different physical meanings for the two 
cases. The mean positions are obtained if the tem- 
perature factor (t.f.) has no first-order terms in the 
reciprocal-lattice vector Q (harmonic t.f., Fourier 
transforms of the Gram-Charlier series); if there are 

0108-7673/86/050356-07501.50 

first-order terms in Q, other positions will be obtained 
whose meaning needs to be established. The advan- 
tages associated with the mean positions are 
described, and the disadvantages associated with 
other positions are illustrated with an example from 
the literature. A procedure is described in which the 
physical meaning (if there is any) of a non-mean 
position can be established and the mean position 
calculated. The problem of parameter bias is ana- 
lyzed and numerical results are discussed for three 
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structures. Provided the anharmonic model produces 
a significantly better fit to the experimental data, it 
is concluded that better estimates of the mean posi- 
tions are obtained with anharmonic than with har- 
monic t.f.'s. 

1. Introduction 

While comparing positional parameters and bond 
lengths obtained with anharmonic refinements, we 
found that different types of temperature factors 
(abbreviated t.f.'s) result in different types of posi- 
tional parameters. With harmonic t.f.'s no problem 
arises: the mean positions are always obtained. With 
anharmonic t.f.'s other positions can be obtained, like 
the most frequent positions from an isolated-atom- 
potential (IAP) approach (Dawson, Hurley & Mas- 
len, 1967; Willis, 1969; Willis & Pryor, 1975; Scherin- 
ger, 1985). With anharmonic t.f.'s it may happen that 
the physical meaning of the obtained positional 
parameters is lost (see the example in § 4). We shall 
show that the choice of type of positional parameters 
does not matter for the calculation of structure factors 
but that one must determine what type of parameters 
one has defined. This is particularly important if one 
wants to compare positional parameters obtained 
from different refinements. In this paper we shall 
describe a procedure which makes it possible to deter- 
mine the meaning of the positional parameters 
unequivocally, provided there is a meaning. For the 
comparison of bond lengths as distances between 
positions it is necessary to use positional parameters 
that have the same meaning. In §§ 2 and 3 we shall 
show that the parameters describing the mean posi- 
tions offer several advantages and are best suited for 
the comparison of bond lengths. 

Another problem arising from the use of anhar- 
monic t.f.'s is as follows: even if the same type of 
position is determined throughout, e.g. the mean posi- 
tion, different numerical values of the positional par- 
ameters are often obtained with harmonic and anhar- 
monic t.f.'s. The question arises which t.f. will yield 
the 'best' values of the positional parameters. Johnson 
(1969, 1970) remarks that anharmonic t.f.'s do not 
give 'usable estimates for the atomic positional para- 
meters' whereas harmonic t.f.'s give 'unbiased esti- 
mates'. Johnson (1969, 1970) does not establish his 
opinion by means of statistical theory or by quoting 
relevant literature, but he points out that there are 
correlations among the tensor components of odd 
order which also affect the positional parameters. 
This, however, does not answer our basic question, 
and in § 5 we shall analyze the problem of the best 
estimate of positional parameters by means of the 
method of least squares. 

2. The meaning of the positional parameters 

First, we consider why the positional parameters can 
have different meanings. From the general derivation 

of the (also anharmonic) t.f. given elsewhere 
(Scheringer, 1986a), it can be seen that the positional 
parameter x in the structure factor has no other 
immediate meaning than the designation of the origin 
of the vibrational coordinates u of an atom in the 
unit cell; i.e. u = 0 at the position x. The vibrational 
coordinates u are the variables of the probability 
density function (abbreviated p.d.f.) whose Fourier 
transform is the t.f. The origin u = 0 in the p.d.f, can 
be freely chosen. A change in the location u = 0 in 
the p.d.f, causes a corresponding change in the posi- 
tional parameters x, and, hence, in the meaning of 
these parameters. If  only the origin u = 0 is shifted 
and the shape and position of the p.d.f, in the unit 
cell is preserved, the same structure factors will be 
calculated. The analytical formulation concerning 
such a shift of origin is as follows: Choose two origins 
for the p.d.f., shown as I (u = 0) and II (u '=  0) in Fig. 
1. The corresponding positions in the unit cell are x 
and x', the p.d.f.'s p(u) and p'(u') and the t.f.'s T(Q) 
and T'(Q) respectively. Omitting the scattering fac- 
tors, we obtain as contributions to the structure factor 

T(Q) exp ( iQ .  x) for origin I, ( l a )  

T'(Q) exp ( iQ .  x') for origin II. ( lb)  

We shall show that ( l a )  and ( lb)  give the same 
contribution. With x ' = x + A  (see Fig. 1) we have 
exp ( iQ .  x') = exp ( iQ .  x) exp ( iQ.  A). If we view 
the p.d.f, from position II in Fig. 1, it appears to be 
shifted by an amount - A  compared with the view 
from position I. Hence, the Fourier transforms of the 
two p.d.f.'s p(u) and p'(u') differ only by a phase 
factor; i.e. T ' ( Q ) =  T ( Q ) e x p [ i Q . ( - A ) ] .  The two 
factors in T ' (Q)exp  ( iQ .  x') containing A and - A  
cancel and the equality of ( l a )  and ( lb)  is proven. 

Since the origin u = 0 in the p.d.f, can be freely 
chosen, the meaning of the positional parameters x 
is defined only by the physical meaning of the location 
u = 0 in the p.d.f. In actual refinements, the location 
u = 0 is fixed in the p.d.f, by the form of the t.f. being 
used. Several forms of the t.f. have been used in the 
past and it is expedient to sort them into two classes. 
Class 1: (u) = 0, x = mean position; class 2: (u) ~ 0, 
x = some other position. Members of class 1 are the 
conventional harmonic t.f., the Fourier transform of 
the Gram-Charl ier  series [International Tables for 
X-ray Crystallography, 1974, p. 317, equation (9)] and 
the cumulant expansion without first-order terms of 

X X' X X' 
U=O U'=O U,U' 

Fig. 1. Two different origins, I and II, of the vibrational coordinates 
chosen for the same p.d.f. 
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Q [Johnson, 1969, equation (4); International Tables 
for X-ray Crystallography, 1974, p. 317, equation (10), 
omitting the first cumulant term with K J]. Members 
of class 2 are lAP t.f.'s without site-symmetry restric- 
tions (Mair & Barnea, 1975; Whiteley, Moss & Bar- 
nea, 1978; Scheringer, 1985) and some t.f.'s used for 
describing molecular librations (Willis & Pryor, 1975, 
equations 6.29-6.31). A further t.f. of class 2, which 
is composed of three different factors, will be dis- 
cussed in § 4. 

The two classes are also distinguished by the pres- 
ence or absence of first-order terms in the reciprocal- 
lattice vector Q in the t .f .T.f. 's  without first-order 
terms in Q are always members of class 1; t.f.'s with 
such terms are members of class 2 (there is one 
exception which we shall discuss in § 4). A 'first-order 
term' must have Q in the first power but may represent 
different functions of Q. Our statements above follow 
from a theorem on the calculation of moments of a 
p.d.f, from its Fourier transform (Kendall & Stuart, 
1969, pp. 60-61). The first moment, i.e. the mean, of 
a p.d.f, is given by 

(uj)=OT(Q)/ioQjlo=o, j =  1,2,3. (2) 

Evaluation of (2) proves our statements. Only first- 
order terms in Q yield components (uj)# 0. With an 
inclusion or omission of first-order terms in the t.f. 
the origin u = 0 in the p.d.f, is always shifted, but the 
p.d.f, is fully preserved if and only if the terms are 
of the type exp ( iQ.  A) (see above). Hence, by includ- 
ing or omitting first-order terms of Q in the t.f., the 
shape of the p.d.f, is usually slightly changed. 
Similarly, since first-order terms in u in the p.d.f, give 
rise to first-order terms in Q in the t.f. which usually 
differ from exp ( i Q . A ) ,  inclusion or omission of 
first-order terms in u in the p.d.f, not only causes an 
origin shift but also changes the shape of the p.d.f. 
slightly. 

With t.f.'s of class 2 there is always the problem of 
establishing the meaning of the positional parameters, 
i.e. the meaning of the location u = 0  in the p.d.f. 
Besides the mean, the maximum of the p.d.f. 
obviously represents a location of physical sig- 
nificance. However, many locations in a p.d.f, have 
no particular meaning. Hence, it is possible that one 
has unknowingly defined a location u = 0 in the p.d.f. 
which has no physical meaning and has calculated 
bond distances which are correspondingly meaning- 
less (see § 4). 

3. Advantages associated with t.f.'s of class 1 

We recommend the use of t.f.'s of class 1, i.e. (u)--0, 
x = mean position, because they offer several advan- 
tages which we sum up as follows: 

(1) Uncertainties in the meaning of the positional 
parameters cannot arise. 

(2) Bond distances calculated from conventional 
harmonic and anharmonic refinements can be com- 
pared directly. 

(3) Formulae for bond-length corrections are only 
known for bond lengths which were defined as dis- 
tances between the mean positions of two atoms. The 
corrections can be applied directly to the distances 
calculated from the positional parameters. 

(4) T.f.'s of class 1 (usually) have no first-order 
terms in Q and thus assume their simplest form (short- 
est programming, shortest computing times). 

(5) With in)= 0, the central moments of the p.d.f. 
can be calculated directly from the t.f. (Kendall & 
Stuart, 1969, pp. 60-61). 

(6) The positional parameters not only denote the 
positions of the means of the individual atomic p.d.f.'s 
but also the positions of the means of the joint p.d.f. 
which describes the vibrations of all atoms in the 
crystal. This follows from the fact that the moments 
of a (joint) p.d.f, are defined by moments of the 
respective marginal p.d.f.'s (International Tables for 
X-ray Crystallography, 1959, ch. 2.6). It has been 
shown elsewhere that the p.d.f, of a given atom is the 
three-dimensional marginal p.d.f, of the crystal p.d.f. 
(Scheringer, 1986a). There is no other type of posi- 
tional parameter that represents a respective posi- 
tional property of the crystal p.d.f. (or of the crystal 
potential; see § 4). 

4. Problems arising with t.f.'s of class 2 

Our analysis in § 2 has shown that, with t.f.'s of class 
2 (i.e. (u)~0) ,  the meaning of the positional par- 
ameters is not automatically given and must be estab- 
lished when unconventional t.f.'s are used. Further- 
more, for comparison with results from harmonic 
refinements, the mean positions must be calculated 
explicitly. In this section we shall first discuss the 
general attack on these two problems. With IAP t.f.'s 
it is commonly assumed that the minimum of the 
potential has been determined. We shall show that 
this assumption is not generally valid. Finally, we 
shall discuss an example from the literature in which 
the meaning of the positional parameters has not been 
established and so has led to an inadequate interpreta- 
tion of the calculated bond distance. 

Determination of the meaning of the positional param- 
eters and calculation of the mean position 

If the p.d.f, is given in analytical form, the location 
u = 0 in the p.d.f, can be calculated and the meaning 
of this location (if there is any) can be established 
either by analytical means or simply with the aid of 
a drawing. If the analytical form of the p.d.f, is not 
known, the p.d.f., and hence the location of its origin 
u=0 ,  can be calculated by means of numerical 
Fourier inversion of the t.f. The position u = 0 can, 
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however, be determined more easily relative to the 
mean (u) by means of (2). This may already give an 
indication as to whether or not the position u = 0 
denotes a point of physical significance. 

Having determined Cu) from the t.f., one can 
immediately calculate the mean position xm in the 
unit cell. Let x in Fig. 1 be the position of u = 0 in 
the cell, x' the mean position Xm, and A = Cu) follows. 
Hence 

xm =x+Cu). (3) 

However, it is better to determine the mean positions 
directly in the refinement. There are two procedures, 
which differ in detail. The first represents the excep- 
tion for class 2 which we have mentioned in § 2. In 
addition to the first-order term in Q present in the 
t.f., one introduces a second first-order term, the 
factor exp ( iQ.  C-u)). Then both terms together yield 
Cu-u) = 0. In each cycle of the refinement, C-u) is 
calculated anew from the given first-order term in Q 
and the current values of the parameters. With this 
procedure, the position and shape of the p.d.f, are 
fully maintained in the unit cell. The second pro- 
cedure is simpler to apply. In the given t.f. all first- 
order terms in Q are omitted. Since the first-order 
terms usually are not exponential factors, the shape 
of the p.d.f, is slightly changed. Hence, the two pro- 
cedures are not fully equivalent. Obviously, they 
become more equal as Cu) becomes smaller. Usually 
one will not be able to decide which form of the p.d.f. 
is (physically) better. 

For the example of CdSe (Whiteley, Moss & Bar- 
nea, hereafter WMB), we have assessed the differen- 
ces in the numerical values of the parameters which 
arise with the two procedures. With the first pro- 
cedure, the thermal parameters obtained by WMB 
are not altered at all. To determine the effect on the 
thermal parameters with the second procedure, we 
should perform the refinement using WMB's t.f. 
without first-order terms in Q. We cannot do this 
since we do not have the necessary data, but we can 
assess the changes of the thermal parameters as fol- 
lows. We multiply WMB's t.f. with the factor 
exp ( iQ.  C-u)) and so ensure that the (calculated) 
structure factors of the final least-squares solution are 
preserved. Now we expand the factor exp ( iQ.  C-u)) 
in a series and so obtain the changes of the thermal 
parameters of different orders. The linear first-order 
terms completely cancel and thus our second pro- 
cedure is followed. The harmonic parameters B33 are 
modified by the terms 2,/rC-u3)2/c 2. Using c = 7.01 ~ ,  
Cua)(Cd) =0.006 A and Cua)(Se)=-0.003 A (Barnea, 
private communication), we obtain the changes 
ABaa(Cd) =0.0028/~2 and ABaa(Se) =0.0007 A 2 (to 
a good approximation). These are 0.16 and 0.07% 
of the values of B33. The changes in the third-order 
terms are calculated from (2~r)3C-u3)3/(3!c 3) and 
amount to 0.10 and 0.08% of the third-order terms 

for Cd and Se respectively. The effect of the higher 
terms in the expansion of exp ( i Q . ( - u ) )  can be 
neglected. The differences in the thermal parameters, 
as obtained with the two procedures, are clearly smal- 
ler than the errors in the parameters. Thus, with the 
quality of present-day intensity data, it does not mat- 
ter which procedure is used. Omission of the first- 
order terms in Q in the t.f. is simpler, at any rate. 

Positions obtained with the IAP t.f. 

lAP t.f.'s are commonly defined so that the p.d.f. 
does not contain first-order terms in u (Mair & Barnea, 
1975; WMB; Scheringer, 1985). Hence, from the p.d.f. 
given, we can only deduce that the origin u = 0 is 
located at the maximum of the p.d.f. Any assertion 
beyond this statement cannot be derived from the 
p.d.f, itself and thus is an interpretation performed 
by the investigator. Since the IAP t.f. is derived by 
means of an effective potential and classical statistics, 
it has become common practice to identify the 
maximum of the p.d.f, with the minimum of the 
potential. However, such an identification cannot 
rigorously be established because the expansion of 
the IAP p.d.f, diverges in every case and does not 
reproduce the Boltzmann function (Scheringer, 
1985). Furthermore, Ibers (1959) has shown that the 
maxima of the p.d.f, do not generally correspond to 
minima of a potential. In particular, Ibers's (1959) 
equation (6) shows that the distances between the 
maxima of the p.d.f, are not equal to the distances 
between the minima on the potential-energy hyper- 
surface of the molecule. 

Moreover, the position of the ( 3 n N - 6 ) -  
dimensional potential minimum of the nN atoms in 
the crystal cannot be derived from the n IAP t.f.'s 
(except for the case where it is fixed by site symmetry). 
In general, the maxima of the n p.d.f.'s in a cell do 
not correspond to the (3nN-6)-dimensional  
maximum of the joint p.d.f, of the crystal, and even 
if they do, one does not know how the ( 3 n N -  
6)-dimensional potential minimum is related to the 
(3nN-6)-d imensional  maximum of the joint p.d.f. 
Thus, it is impossible to deduce the positions of 
crystal-potential minima from IAP t.f.'s. Note, on the 
other hand, the advantage (6) obtained for the mean 
positions with t.f.'s of class 1. 

The meaning of the atomic position has not been 
established 

As an illustration we shall now discuss the calcula- 
tion of the O-H bond length in potassium oxalate 
hydrate, as performed by Eriksson, Hermansson, 
Lindgren & Thomas (1982), hereafter EHLT. The 
vibrations of the H atoms were described as being 
partly anharmonic, i.e. in the librations around the 
oxygen atoms and in the bond-stretching modes. 
EHLT used six different models for structure-factor 



360 POSITIONAL PARAMETERS 

calculation: the conventional harmonic model (model 
I) and five anharmonic models with various 
modifications. The model of central interest is model 
II for which the p.d.f, is composed of three factors, i.e. 

T ( Q ) =  T(Q)harmT(Q)l ibT(Q)strete  h. (4) 

Both T(Q)nb and T(Q)streteh are composed of several 
factors which were obtained from a normal coordi- 
nate analysis [see EHLT, equation (4)]. O-H bond 
distances were calculated for all six models (EHLT, 
Table 1). Model I gives 0.963 A, model II 0.967 Zk. 
EHLT assess the utility of each model by stating that 
the anharmonic model II facilitates ' . . .  a more so- 
phisticated analysis of the diffraction-obtained 
geometrical and thermal parameters' and that the 
conventional harmonic model is ' . . .  shown to give 
considerable systematic errors in the geometrical 
parameters for the water molecule'. 

In our opinion, EHLT failed to establish the mean- 
ing of the positional parameters of the H atom, which 
is associated with their model II. We shall show that 
the mean positions for models I and II coincide within 
the limits of experimental errors, and that the O-H 
bond distance of 0.967 A for model II has no meaning 
at all. 

With the three factors given in (4), the p.d.f, is the 
convolution of the three single p.d.f.'s Pharm, Plib and 
Pstretch- Because of symmetry we obtain (u0 = (u2) = 0 
[see EHLT (Fig. 2, axis 3 in the direction O-H)] .  (u3) 
is unknown. We obtain it from (4) by means of (2) 
according to 

(/'/3) = ( U3)lib + ( U3)stretch (5) 

because ( / , / 3 )ha rm=0  and all p.d.f.'s are normalized, 
i.e. T(Q = 0 ) =  1. To evaluate (5), we must use t.f.'s 
of the single internal modes, i = 1 , . . . ,  n, and deter- 
mine the means (u3)i by use of (2). Then (u3) = ~ (u3)i. 
From the product of the n~ librational modes we find, 
from (2) and EHLT [equation (5)], 

tl I 
(U3)lib = Z ( - l a t l l ) i  • (6 )  

i=1 

We do not know the values of L~ for the individual 
internal modes, but we can estimate (U3)lib by virtue 
of the fact that (U3)li b is the reverse bond-length correc- 
tion. From the bond lengths of models I and VI 
(EHLT, Table 1) we obtain (U3)ub = 0"963 -- 0"989 = 
--0"026/~. From Fig. 3 of EHLT, (U3)stretc h : 0.0107/~ 
for each of the two stretching modes (Eriksson, 
1984, private communication). Hence (u3)= 
-0 .026+2  x 0.0107 = -0.0046 A. With these values, 
we find the mean position of the H atom for model 
II to be located on the O-H bond at a distance of 
0.967 - 0.005 = 0.962/~ from the O atom. Within the 
limits of error, this value coincides with the bond 
length of 0.963/~ obtained with the harmonic model. 

To determine the physical meaning of EHLT's 
bond distance of 0.967 ~ (model II), one may evalu- 

ate the p.d.f, of the t.f. (4) and find the meaning of 
the position u3 = 0 in the p.d.f. Since the p.d.f, is not 
known analytically, a numerical Fourier inversion of 
the t.f. for points along u3 could help. However, the 
following consideration may be sufficient. Since the 
two models for bond stretching and librations 
(models III and IV) are basically different, the sum 
(U3)li b + (U3)stretc h will assume any unforeseeable value, 
depending on the number and type of internal modes 
that are included in the calculation. Hence, the origin 
u3 = 0 will assume any unforeseeable position relative 
to the mean (us) and will lie anywhere in the p.d.f. 
Since generally it cannot be expected that such a 
position denotes a point of physical significance, the 
obtained O-H distance of 0-967 A is correspondingly 
meaningless (unless the contrary is proven). Thus 
EHLT's statement that the conventional harmonic 
refinement is ' . . .  shown to give considerable system- 
atic errors in the geometrical parameters for the water 
molecule' has no physical basis. It is better to avoid 
such situations by placing the origin u = 0 at the mean 
of the p.d.f. In EHLT's investigation, this can be done 
by omitting the first-order term [ 1 -  ( i / 2 ) L l l a Q 3 ]  -~/2 
in equation (5) of EHLT, and placing the origin of 
Pstretch in Fig. 3 of EHLT at its mean. 

5. Parameter bias 

Refinements have shown that different numerical 
values for the mean positions are obtained with har- 
monic and anharmonic t.f.'s. Hence the question is: 
which t.f. gives rise to the best estimate of the mean 
position? Johnson (1969, 1970) states that harmonic 
t.f.'s will do so since, in his opinion, only these give 
rise to unbiased estimates. Common sense suggests 
that with a better physical model, i.e. with anharmonic 
t.f.'s, better estimates can be obtained. This view also 
seems to be the basis of EHLT's investigation. In the 
following it is sufficient to consider only the mean 
positions since these can always be calculated from 
any other position. 

'Bias' in the estimated parameters is a concept in 
mathematical statistics. Let E(p) be the expected 
values of the parameters p and Pt~ the true 
(unknown) values; then the bias b is defined by 

b = E(p) -p t~e .  (7) 

Linnik (1961, pp. 127-128) has shown that in linear 
least squares the estimated parameters are unbiased 
if the observed data are unbiased (with respect to 
their error distribution). The 'model', i.e. the relation 
between parameters and data, is assumed to be known 
and correct. Wilson (1973), by means of a linear 
Taylor expansion of the calculated structure factors, 
obtained the same result for one parameter in non- 
linear least squares (see also Wilson, 1976, 1979). It 
is not difficult to extend Wiison's (1973) treatment to 
several parameters, but we shall not do so here. 
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Wilson (1973) has formally also included effects of 
an incomplete or incorrect model. Such effects give 
rise to 'biasing terms'. Extending Wilson's (1973) 
results to the ease of several parameters, we obtain 

p = Ptr~+ f(o') +m(8),  (8) 
where tr denotes the errors in the observed structure 
factors and 8 the differences between calculated and 
true structure factors (calculated from an incomplete 
model but with the true parameters). The statistical 
bias is now obtained by calculating the expected 
values from the error distribution of the observed 
data, i.e. by E[f(tr)]. The term m(8) does not con- 
tribute to statistical bias since m(8) is obtained from 
a theoretical model. If we assume no bias in the data, 
i.e. E[f(tr)] = 0, we obtain from (8) 

E(p) = pt~e+m(8). (9) 

In (9) m(8) looks formally like statistical bias 
although it is not. With 'bias due to defects in the 
model' Wilson (1984, private communication) wanted 
to describe errors in the parameters obtained when 
the model is incomplete or incorrect and here Wilson 
did not consider the statistical meaning of the word 
'bias'. In our opinion, terms like m(8) are correctly 
placed in (8), since they denote a systematic deviation 
between p and Pt~e, whereas in equations like (9) 
they might be mistaken for statistical bias. 

We conclude that by means of statistics we cannot 
confirm Johnson's (1969, 1970) statement that har- 
monic t.f.'s give unbiased estimates of the positional 
parameters and anharmonic t.f.'s do not. Correlations 
among odd-order tensors may affect the obtained 
positional parameters, but this does not imply that 
these are 'biased estimates'. Rather, it can be argued 
that the positional parameters become erroneous 
because higher odd-order tensors have been omitted, 
although they may be required to complete the model 
and thus enable a better description of the physical 
reality. 

Examples 

We shall consider numerical examples from three 
different investigations. They have in common that 
the anharmonic contributions originate from libra- 
tional motion. The numerical results all agree in that 
the bond distances obtained from anharmonic 
refinements are shorter than those obtained from the 
harmonic refinement. 

Our first example is the O-H bond distance in 
EHLT's investigation. The same type of position of 
the H atom is defined with models V and VI. With 
the anharmonic model V an O-H distance of 0.988/~ 
is obtained; with the nearly harmonic model V ( n o  
third-order term in Q) a distance of 0.989 A is 
obtained (see EHLT, Table 1). 

In our second example we consider the results on 
urea (neutron diffraction data) reported by Pryor & 

Sanger (1970). They compare the bond lengths 
obtained with two different models: (1) a conven- 
tional refinement and bond lengths corrected for the 
effects of molecular libration, and (2) a conventional 
refinement including anharmonic effects of curvi- 
linear motion (third-order sensors) and bond-length 
correction (first-order tensors) (see Pryor & Sanger, 
1970, Table 8). All four bond lengths obtained with 
the inclusion of anharmonic components were shorter 
than those obtained with the conventional refinement; 
the differences were 0.002, 0.003, 0.010 and 0-002/~ 
for the C-O, C-N, N-H(1) and N-H(2) bond lengths, 
respectively. 

Finally, we present some new results obtained with 
new refinements of the structure of thiopyridone 
(Ohms, Guth, Kutoglu & Scheringer, 1982), R ( F ) =  
0.028 for 873 neutron diffraction data (Scheringer, 
1986b). We used a Gram-Charlier series as p.d.f, with 
third-order terms in u (components cog). There are 
only three anharmonic parameters, Lll, L22, L33 
(referring to the three principal axes of libration), 
from which all the anharmonic components cijk were 
calculated. With the three parameters L, added to 
the conventional harmonic model the improvement 
in fitting the observed structure factors was significant 
[level of significance a <0.005, L, /cr(Lu)=50,  60, 
31 for i = 1, 2, 3]. With anharmonic t.f.'s, the bond 
lengths are shorter by 0.0004-0.0052A (mean 
0.0023/~) than those obtained with harmonic t.f.'s. 

Since in all three investigations the bonds were 
shortened when anharmonic components of libra- 
tional origin were included, we are led to conclude 
that this bond shortening is a systematic effect. It 
arises from the better (anharmonic) model that was 
used to describe librational motion. Since one cannot 
prove that harmonic t.f.'s give unbiased estimates of 
the positional parameters, we conclude that anhar- 
monic t.f.'s give better estimates if the following two 
conditions are fulfilled: (1) the motions of the atoms 
are really anharmonic, and (2) the anharmonic 
parameters give rise to a significantly better agreement 
between observed and calculated structure factors. 
This view may be put on a more solid basis if, for 
some molecules, the bond lengths derived from the 
most accurate structure determinations are found to 
correspond to bond lengths obtained by means of 
spectroscopic or gas-electron-diffraction methods 
(Landolt-BSrnstein, 1976). 

I thank Dr A. Eriksson for supplying the numerical 
value of the mean of the bond-stretching p.d.f., and 
Professor A. J. C. Wilson for correspondence and a 
discussion on the problem of parameter bias. 
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Abstract 

Algebraic formulae are presented which permit a 
unique phased solution for diffraction data measured 
from a single isomorphous pair of crystals. Trial 
calculations performed on an SIR (single isomor- 
phous replacement) data set from an 84-atom struc- 
ture demonstrate that complete phasing can be 
achieved from a single chirally positioned replace- 
ment atom representing less than one percent of the 
total scattering power of the derivative structure. 
Similar phase refinements employing error-free SIR 
data for 2Zn pig insulin are less remarkable, and 
converge to an average phase error of 50 ° . The phase 
convergence of the formulae can be markedly 
improved if estimates of the cosine invariants from 
the SIR data are available [Hauptman (1982). Acta 
Cryst. A38, 289-294; Fortier, Moore & Fraser (1985). 
Acta Cryst. A41, 571-577]. The precision of these 
cosine estimates was found not to be critical; modular 
estimates of +1 or -1 were sufficient to allow the SIR 
phase refinement of the insulin structure to converge 
to an average phase error of 6 ° , which compares 
favorably with the value of 3 ° produced if the cosine 
invariants were known precisely. The derived for- 
mulae are also shown to be applicable to single-crystal 
analyses which utilize one-wavelength anomalous 
dispersion or partial structural fragments to initiate 
phasing. Test examples indicate that tangent-formula 
recycling procedures based on the derived formulae 
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compare favorably with the traditional tangent- 
formula methods to exploit partial structure infor- 
mation. 

Introduction 

Recent developments in the improvement of transla- 
tion-function methods (Langs, 1985) have introduced 
formulae which enable one to determine unam- 
biguously the sine component of translation-function 
coefficients, given only the real component of these 
inherently complex-valued quantities. These pro- 
cedures may be shown to be useful in other crystallo- 
graphic situations in which it would be advantageous 
to retrieve the imaginary component of a complex 
variable for which only the real component is known. 
Several important applications may be found in struc- 
ture-determination methods which use either partial 
structural models, anomalous scatterin 8 or isomor- 
phous replacement to initiate phasing. 

Crystallographic single isomorphous replacement 
(SIR) methods possess a known twofold ambiguity 
in the determination of non-centrosymmetric phases 
based on the determined positions of the replacement 
atoms. The resolution of this ambiguity by multiple 
isomorphous replacement relationships (Green, 
Ingram & Perutz, 1954; Harker, 1956) is dependent 
on the ability to prepare additional isomorphous 
derivatives of the native structure with replacement 
atoms possessing significantly large scattering powers 
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